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Abstract

Stool analysis is an important diagnostic tool used in the clinical setting to
evaluate gastrointestinal health. The morphology of stool can provide valuable
information regarding digestive function, disease, and treatment efficacy. Health
monitoring is facilitated by long-term data collection that establishes a health
baseline and enables the detection of deviations from it. With the advent of the
Internet of Things, monitoring daily excreta from a toilet is emerging as a
promising tool to achieve the long-term collection of physiological data. This
paper describes a stool structure classification approach that accurately and
efficiently tracks stool structure using a smart Toilet. The Smart Toilet captures
the image of stools in the toilet plumbing outside the purview of the user. We
constructed a stool image dataset with 2350 images, split the dataset into
training and testing sets, and several machine learning algorithms were
evaluated for their classification performance. The labelling of the dataset was
performed by the subject matter experts. 

We addressed the following limitations associated with the application of
computer vision techniques to a smart toilet system: 
(i) uneven separation among the different stool structure categories; 
(ii) class imbalance in the dataset; 
(iii) limited computational resources in the microcontroller integrated with the
smart Toilet. 

For the classification of stool form, we achieved a Neighboring accuracy of 95%
using a CNN based on MobileNetV2. Our proposed classification system can aid
in the diagnosis and monitoring of gastrointestinal diseases, and to improve
patient outcomes by facilitating timely and accurate treatment.
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1. Introduction

Biomedical imaging is one of the cornerstones of medical diagnostics and it is
being enhanced by sophisticated machine learning techniques. Recent
applications of machine learning for health applications have focused on the
analysis of physiological data collected over a prolonged time. This analysis
provides individualized risk assessment and early warning of disease onset that
can be used to trigger interventions. Long-term adherence to precision health
monitoring is facilitated by not requiring the user to personally collect the data.
Human excreta (urine and stool) are readily available specimens regularly
deposited in toilets. With the advent of the Internet of Things (IOT) paradigm,
monitoring physiological functions from a toilet during bathroom visits is
emerging as an active area of research forprecision health. Research on “smart
toilets” for health monitoring has thus far mainly focused on urine analysis;
however, important health information is also found in faeces.

Specifically, stool physical characteristics such as form (i.e., consistency) and
color contribute to the diagnosis and management of many acute and chronic
gastrointestinal (GI) conditions. Stool appearance is one of the early diagnostic
indicators for evaluation of irritable bowel syndrome (IBS), (as much as 10-15%
of the world population is estimated to suffer from IBS) inflammatory bowel
disease (IBD), malabsorption syndromes, and upper and lower GI bleeding
(Tanaka et al., 2018). The impact of GI diseases on patients and the health care
system is substantial; for example, in the US, GI healthcare cost are higher than
the cost associated with heart disease (Peery et al., 2019).

There is no approved clinical method that can reliably and consistently monitor
stool frequency, form, and color, either in the home setting or in the hospital. To
address this limitation, image capture of the content of a toilet bowl either by
the user (Hachuel et al.,2019) or without user intervention (Park et al., 2019) has
been proposed.
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Our team is developing a smart toilet sensor that can be attached with any toilet
and enables discreet imaging of stool in the toilet pot. Stool image analysis is a
key enabler of smart toilets for monitoring bowel movement. In this paper, we
present a technique used to accurately detect stool structure. For stool structure
classification, we use a compact architecture, such as MobileNetV2, as a typical
example.

The main contributions of this paper are as follows:
1. We constructed a stool image dataset containing 2,350 stool images spanning
all seven Bristol Stool Form Scale (BSFS) types.
2. We present the design of a hierarchical CNN architecture for stool structure
classification over seven BSFS values.
3. We present results for stool structure classification using multiple CNN
models, such as MobileNetV2 and Resnet50, for training the CNN classifier.

The data centric model development approach also plays a major role in
accuracy improvement. Keeping the models same while improving the quality as
well amount of data helps us achieve higher accuracy than previous methods.

Generalizable Insights about ML in the Context of
Healthcare

We demonstrate machine learning (ML) approach for clinically relevant stool
characteristics that is both accurate and computationally efficient. The ML
solution enables the classification of stool characteristics and provides objective
data to inform improved clinical care. This computational tool is implemented as
edge computing near the image data source. We describe an approach that
addresses challenges commonly faced by computer vision techniques being
applied to medical imaging. First, we use approaches such as hierarchical CNN
architecture to overcome the issue of uneven separability between different
categories. 
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Second, by training the CNN using class-balanced loss based on the effective
number of samples, we can address the problem of class imbalance in the
dataset. Third, by evaluating several recent CNN designs, we select a design that
enables image classification that is computationally efficient as defined by
metrics of the number of float-point operations (FLOPs) and memory
requirement, so that it will be easier to deploy the ML model in a resource-
constrained environment, such as the physical smart toilet hardware. Overall,
this combination of machine learning and stool specimen imaging enables a
new form of physiological monitoring that may provide early warning of disease
for timely intervention and improved clinical outcomes.

The rest of this paper is organized as follows. Section two describes related prior
work and provides further motivation for this research. Section three describes
the background of the smart toilet and our system design for stool analysis.
Section four describes the proposed methods for stool-form classification.
Section five presents the experimental results. Section six describes the
limitations of this paper. Finally, Section seven concludes the paper.

2. Related Prior Work

2.1. Bristol Stool Form Classification

The BSFS scale (Lewis and Heaton, 1997) is a standard medical diagnostic tool for
categorizing adult stool based on its physical appearance. Normal stool
consistency is defined as BSFS type 3, 4 and 5 (Markland et al., 2013).
Constipation is defined as Type 1(separate hard lumps, like nuts) or Type 2
(sausage-like, but lumpy). Diarrhoea is defined as a minimum of three loose
stools (Type six and Type 7) per day. The BSFS stool chart is shown in Figure 1.
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Figure 1: Illustration of the BSFS chart (adapted from
http://cdn.intechopen.com/pdfs-wm/46082.pdf)

A 2019 study validated the use of the BSFS by having participants use a printed
card tool with graphics to assess the properties of their bowel movements
(Ohno et al., 2019).

2.2. Machine Learning Approaches for Stool Image
Assessment

Yang et al. (Yang et al., 2019) introduced StoolNet, which combines region of
interest (ROI) detection and a shallow CNN for color classification of stool
images. Park et al. (Park et al., 2020) used transfer learning to train a classifier on
top of a trained deep learning architecture. While these studies provide key
insights into automated stool classification, three major challenges remain to be
addressed, namely, uneven separability, class imbalance, Variable stool size and
model complexity.

Uneven Separability: Visual separability between different BSFS categories is
uneven. For example, it is difficult to distinguish type three from type four, while
it is easy to tell type one from type three. Traditional CNNs (Krizhevsky et al.,
2012; Simonyan and Zis-serman, 2015) use the flat structure to train a N-way
classifier and do not consider such uneven separability, which often leads to
sub-optimal performance in the task of fine�grained classification. 
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A common strategy to address this problem is to predefine a hierarchy or
taxonomy of classifiers so that a given testing image can be first evaluated by a
coarse classifier and the corresponding fine classifier to make the fine prediction
(Murthy et al., 2016; Yan et al., 2015).

Class Imbalance: Medical diagnostic data may have a normal distribution (bell-
shaped curve) or a skewed distribution. For instance, in the stool image dataset
collected by Park et al. (Park et al., 2020), only a few images report constipated
stool, while most images indicate normal stool. A number of solutions have been
proposed in the literature to address the problem of class imbalance. The first
approach is re-sampling, which aims to alter the training data distribution,
usually by random under- and oversampling techniques (Oquab et al., 2014;
Chawla et al., 2002). The second approach is cost-sensitive learning, which
assigns higher misclassification costs to minority classes compared to the
majority classes.

Variable Size: Medical diagnostic image possesses unique challenge in terms of
size. There may be some cases where the stool is very small (few pixels) as
compared to other stool images where major part of image is represented by
stool. There are multiple approaches to solve this problem, but we followed the
simpler ones where we resized larger images into desired shape. While super
resolution is applied to smaller images to enlarge them without losing
significant information. Choosing a smaller input (96*96) for CNN models also
helps because we do not have to enlarge too many images instead, we have to
reduce the size of the image.

Model Complexity: In practice, state-of-the-art CNN models (Simonyan and
Zisserman, 2015) incur significant compute overhead, which imposes a barrier to
their deployment on devices with limited computational power, e.g., a micro-
computer (Raspberry Pi). Many approaches have been proposed to address this
challenge, which can be categorized on the basis of techniques that use either
model compression or compact architectures. Model compression techniques
include parameter pruning and weight quantization (Denton et al., 2014; Cheng
et al., 2017). However, these methods require dedicated hardware or software
customization for practical implementation. In contrast, compact architecture
design methods target more efficient and compact neural network architectures
(Iandola et al., 2018; Howard et al., 2017).
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In this section, we provide an overview of the smart toilet system and formulate
stool analysis as a real-time computer vision problem. Smart-toilet approaches
have been proposed to obtain health-related information from different
configurations, e.g., devices snapped on the toilet bowl (Hall et al., 2020) or
integrated in the toilet seat (Park et al.,2020; Conn et al., 2019). Notably, Park et
al. (Park et al., 2020) introduced a defecation monitoring module that uses
sensors and computer vision to acquire basic properties of human excreta from
sensors integrated in a commercially available electronic bidet. The acquired
images are fed offline to machine learning algorithms for analysis. However,
cameras and illumination devices in the toilet seat create an uncomfortable
environment for the user, as highlighted by the results of a user survey
regarding the technology (Park et al.,2020).

An alternative approach that avoids the adoption barrier due to user discomfort,
is a technology that integrates sensors in the toilet plumbing where they are not
visible to users. A toilet manufacturer reported such a configuration for
urinalysis. 

We have developed a novel approach to image feces in the toilet seat. Our
design offers a unique opportunity for a real - time inline sensing approach
specific to excretion without engendering user discomfort. Also have face
recognition option when user uses the toilet. The main advantage of this design
is easily integration with any toilet seat. 

Figure 2: (a) The setup for stool image analysis. 
(b) Camera placement inside the toilet pot.

3. Smart Toilet System
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4. Smart Toilet System

In this section, we describe the dataset used for analysis, as well as the machine
learning techniques used for classification.

4.1. Stool Image Data Set Preparation

No publicly available stool image dataset exists; thus, we developed our own
image dataset. The stool image dataset used in (Yang et al., 2019) for their
StoolNet model only contained 110 images (each rotated and used four times)
and, these images are not publicly available.

Our work leverages a dataset of 2,350 stool images spanning all seven BSFS
types obtained from test sites which has been setup on various locations in
Japan. A total of 2,350 unique images were obtained through real test locations.
Different masks were added to ensure the privacy of patients. Because the data
was small and not evenly distributed therefore we have to use augmentation
technique to increase the number of images and improve the class balance. Fig
4 shows original as well as augmented images per class.

Figure 3: Framework for stool image analysis in a smart toilet system. (a) Images
are captured when the stool is in the toilet pot (b) Images are processed by the
controller and fed to machine learning algorithms.

The hardware setup used for stool image analysis is shown in Figure 2.
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Figure 4: (A) Bar graph of original train dataset. 
(B) Bar graph of augmented train dataset.

Figure 5: (left) Real image with a mask obtained from toilet camera, (Right)
cropped poo part from image.

We used the online platform Labelbox (Labelbox, 2019) to label the images and
crop specific part of images that contain the stool and assigned to each image a
BSFS score from one through 7. Despite being a clinical standard, the BSFS score
does not capture the full variety of stool forms and does not account for the
presence of stools of more than one BSFS category in the same image. From a
clinical point of view, the important information is whether the bowel movement
is normal (types 3,4,5) or abnormal, that is, constipated (types 1,2) and diarrhoea
(types 6,7).
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Figure 6: Stool pixels without toilet background (left), Stool pixels with toilet
background (Right).

Another problem we faced during data preparation was the small size of
cropped stool. To overcome this, we used super resolution techniques. If the
image size is lower than decided threshold, then super resolution techniques
were applied which results in larger cropped and better resolution image. 

4.2. Stool Structure Classification
The first part of our problem is to determine whether there is stool present in
toilet pot or not and this has been achieved using segmentation techniques.

When there is stool in the pot, we crop that part of image using segmentation
and do further stool structure classification on the cropped part.

We also found that when working with stool images without toilet background
(Figure 6), it generates better results in training and validation, while in real
world scenarios, stool images with toilet background generate better. 
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4.2.2 Base CNN Design
Various CNN designs have been proposed over the past few years for various
applications (Simonyan and Zisserman, 2015; Howard et al., 2017; Gatys et al.,
2015). We consider a single-board computer, i.e., ASUS Tinker Board, to load our
CNN models. The computational resources available on Tinker Board are limited
compared to a server, therefore deep CNNs such as VGG16 are not feasible in
this application scenario. In this paper, we explore CNN designs, namely
MobileNetV2 (Sandler et al., 2018), VGG16, and Resnet50.

MobileNetV2. To reduce computation cost, MobileNetV1 (Howard et al., 2017)
replaces the standard convolutional filters by two layers: depth wise convolution
and 1 × 1 pointwise convolution, where depth wise convolution only extracts
spatial features for each independent channel and pointwise convolution
extracts channel-wise information. Furthermore, MobileNetV2 uses an inverted
bottleneck structure to increase representational power. The base CNN is used
for feature extraction. We use these CNN designs as the base CNN by removing
their last classification layers. Specifically, we removed the last two layers (one
dropout layer and one fully-connected layer) from MobileNetV2 and added our
custom layers on top of it to generate better results.

4.2.1 Architecture

Figure 7: Model architecture for classification.
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Experiments were conducted to evaluate the effectiveness of the proposed
approach for classifying stool forms and detecting images of stool. We pre-
processed the stool images by cropping them and selecting the parts of the
images where stool pixels were majorly presented.

5.1. Results of Stool Structure Classification

Visual differences among various BSFS categories are uneven. That is, it is
difficult to distinguish BS3 from BS4, while it is easy to tell BS1 from BS3. To
leverage the hierarchical structure of stool-form categories, we have come make
neighbouring class accuracy. In the neighbouring class accuracy matrix,
accuracy of adjacent classes is also taken into account.

For example: if we are calculating the accuracy of class BS3, then images that
have been predicted as BS2 or BS4 are also considered accurate due to
corner/edge cases. 

5.1.1. Hierarchical Architecture
The training process for hierarchical CNN includes three steps. We first initialize
the base CNN with pre-training on ImageNet (Deng et al., 2009). After
initialization, we train the classifier and the base CNN together over seven
consolidated categories. We used 96*96 pixels as input size to the CNN.

We used Tensorflow and Keras (Paszke et al., 2019) to implement and train the
CNN using stochastic gradient descent with momentum. Experiments were
executed on Windows platform. The training was performed with mini batches
of size 128. We also tried to batch size of 64, 128 and 256.

We consider two compact CNN designs and two traditional CNN designs,
namely, VGG16 (Simonyan and Zisserman, 2015), ResNet50 as the base CNN in
the hierarchical architecture. We evaluate the performance of classification over
the BSFS scale with seven values. The results are shown in Table 2 and
summarized as follows:

5. Experiments & Results
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Classification for ResNet50 and for MobileNetV2. The hierarchical
architecture brings a slight increase in required memory and FLOPs for
inferencing, because it has three more classifiers than the flat architecture.
Hierarchical architectures with MobileNetV2 as the base CNN achieve the
best performance Moreover, MobileNetV2 only requires 0.35 GFLOPs for
conferencing and the memory requirement is only 15.6 MB.

5.1.2. Prediction Analysis
Visual separability between different BSFS categories is uneven. For example, it
is difficult to distinguish type three from type four, while it is easy to tell a type
one from type three. To leverage the hierarchical structure of stool-form
categories, we have come make neighbouring class accuracy. In neighbouring
class accuracy, the matrix accuracy of adjacent classes also taken into account.

For example: we are calculating the accuracy of class three then images which
have predicted class two or class four also considered accurate due to
edge/Multi-class cases. This can be better explained using the confusion matrix.

Table 2: Accuracy matrix with various base CNN designs on the stool image dataset.

Figure 8: Confusion matrix with actual accuracy and neighbouring accuracy (MobileNet V2). 
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Figure 9: Training graphs (accuracy and loss) of MobileNetV2.

Table 3: Recall and precision of MobileNetV2 considering neighbouring classes.

Table 4: Recall and precision of MobileNetV2 with fine-grained classes.

As illustrated in section 5.1.1, MobileNetV2 outperforms VGG16 and ResNet50 m in
terms of the metrics computational costs (FLOPs and required memory).
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6. Limitations & Discussion
The development of an ML-AI program to automatically classifies stool images for
form (Bristol scale) requires a large number of annotated photos of stool in a
toilet. We annotated the dataset with more than 2300 images. A limitation of this
approach is that the photos had no clinical data associated with them, and while
they spanned the full spectrum of the Bristol scale, the representation of
associated gastrointestinal conditions or symptoms was unknown Additionally,
while the use of the Bristol scale helps standardize stool evaluation, there remains
some variability in assessment even among gastrointestinal specialists. 

We envision that with the future deployment of the Smart Toilet hardware
prototype for use by human subjects, we will be able to collect time series data
from individual subjects. We expect that stool image data collection from the
controlled environment will result in more consistent lighting and even
background that will enhance the model accuracy. A smart toilet with machine
learning image analysis capability to determine stool frequency and form will
provide important diagnostic data that can help identify specific food intolerance
(e.g., foods that exacerbate IBS or chronic diarrhoea) and effects of medication
(e.g., medications taken for diarrhoea or constipation), and can trigger timely
evaluation. We envision that the Smart Toilet time series data collected from
individuals will be integrated with machine learning predictive models and provide
a valuable diagnostic and surveillance tool for GI, infectious disease, and other
specialties.

7. Conclusion
We have developed an automated technique for stool classification using a
combination of a Smart Toilet and machine learning. We have developed a
comprehensive stool image dataset for assessing the classification approach. We
have used CNN architectures that can be used for stool image analysis in a
resource-limited computational environment. Specifically, we showed that the
CNN based on MobileNetV2 can achieve a neighbouring accuracy of 95%, with the
memory requirement of only 15.6 MB and 0.32 GFLOPs for inferencing. Our
results open up an interesting new re - search direction on privacy-preserving and
real-time stool classification for health assessment.
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