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Fibre Optics cable acts as the backbone for providing last-mile connectivity for growing 
internet consumption within the masses. Apart from providing long-distance network 
connectivity, these cables are also used along critical industry establishments to pro-
vide surveillance capabilities, for example, pipelines used for natural gas transmission. 
For data transmission setups, these cables provide low-loss & high bandwidth data 
transmission and also high sensitivity to surrounding vibrations. However, fiber optics 
cables are considerably more susceptible to damage due to their inherent architectural 
setup.

In the industry fiber optics cables are used in multiple types of installation, such as 
aerial cables, and buried cables, and in some unique cases, the same fiber length is 
placed in an aerial setup for some distance and buried set up for another piece of dis-
tance. Distributed Acoustic System (DAS), is especially well suited for monitoring hun-
dreds of kilometers of fiber length with a single Sensitive Optical Time Domain Reflec-
tometer). Distributed Acoustic Systems (DAS) can be applied in varied installations and 
assist in converting vibration intensities received over fiber optics cable into digital 
data. Multiple attempts have been made by the research community to build pattern 
recognition systems (PRS) using machine [1] learning techniques to analyze, predict 
anomalies and classify vibrations into different categories, thereby, attempting to avoid 
damage to fiber optics infrastructure or the targeted industry infrastructure in surveil-
lance centric implementation. However, the majority of the pattern recognition meth-
ods used up till now can be grouped under the following categories:

▪  Rule-based methods
- Employing use-case and domain-specific thresholds for classifying anomalies

▪  Discriminative model-based methods
- Support Vector Machine (SVM) - (linear & non-linear kernels)
- Simple neural networks (fully connected), acting as classification models.

▪  Generative model-based methods
- Gaussian Mixture Models (GMM) - (with and without postprocessing)
- Convolutional Neural Network 2 Dimensional (CNN2D) - (single channel) based    
 auto-encoders with regression-based classification



 
Introduction  
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Anomaly detection in DAS-based FiberOptics vibrations has been a popular area for 
research for many years. While a lot of research has been done for achieving this using 
advanced signal processing-based methods and also using conventional unsupervised 
and supervised machine learning approaches, the application of deep learning-based 
methods has been quite limited. There have been sporadic references where deep 
learning-based methods have been applied to FiberOptics vibrations, however, even that 
has been from a discriminative modeling approach perspective. The recent 
advancement in generative algorithms using deep learning has rarely been tried in this 
domain. This research aimed to evaluate the applicability and efficacy of generative 
modeling techniques for anomaly detection for DASbased FiberOptics vibrations, which 
takes the research in this domain to a new level.

While this research evaluates the conventional deep learning generative algorithm 
(AutoEncoder) for anomaly detection, it also evaluates some of the most advanced and 
recent development in the area of GAN for anomaly detection. It is worthwhile to 
mention that architectures like AnoGAN, EGBAD and, Ganomaly were originally 
conceptualized for anomaly detection on image-based data, however, this research 
applies the same ideology to fiber optics vibrations. This research hypothesizes the 
correlation between the 2 domains (image and FiberOptics vibrations) by considering 
the spatio-temporal nature of fiber optics vibrations to be in line with space and time 
information expressed in images (time is a static quantity in each image, and in fiber 
optics vibrations, a specific time window is considered as a single element). Additionally, 
the frequency element in fiber optics vibrations is related to color channels in 
image-based data, because, each color channel presents information from the same 
space-time combination from a different frequency (RGB) domain. Similarly, a 
timelocation window in fiber optics vibrations could be conceptualized with multiple 
frequencies over the channel axis. 

This research has also been able to draw empirical comparisons between the efficacies 
of different modeling techniques. Additionally, models have also been compared from a 
more real-life scenario perspective by using spectrogram-based graphical evaluation 
technique, and this evaluation also correlated to the conclusion drawn through empirical 
evaluation.
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Rule-based and discriminative model-based methods pose some major challenges
▪  Getting labeled data.
▪  These methods can classify vibrations among a pre-defined set of classes,   

 resulting in frequent model training with changing operating conditions.
▪  Sensitivity to changing environmental conditions beyond the distribution of   

 training data.

Within the scope of generative model-based methods, conventional methods like GMM 
lack performance when applied to real-world conditions. CNN2D-based autoencoders 
(Oh & Yun, 2018) have taken one step ahead in implementing complex neural 
network-based methods for anomaly detection. However, fundamentally, it is known 
that unconstrained auto-encoders are not the best architectures for building robust 
lower latent space representations.

The current state-of-art generative models are based on adversarial learning 
(Goodfellow et al., 2014), also known as GAN (Generative Adversarial Networks). 
GANbased generative models provide (virtually) unlimited scope for performing 
modeling in multiple different manners, thereby, providing a wider scope for addressing 
the problem of pattern recognition for vibrations obtained from DAS.

This research aims at implementing GANbased anomaly detection methods to vibration 
data obtained from DAS, with the objective for the application of this method to 
real-world conditions.
Distributed acoustic sensing for fiber optics cable is based on a physical phenomenon 
called Rayleigh scattering that is naturally seen in fiber optics. Molecular-level 
imperfections in the fiber act as micromirrors resulting in partial backscattering. This 
backscattering phenomenon is termed Rayleigh scattering, and the micromirrors are 
also often called scattering centers (Aktas et al., 2017). The principle of Rayleigh 
scattering is employed in mainly two different manners for measurement.
▪  Phase Sensitive Optical Time Domain Reflectometry (�OTDR)
▪  Optical Frequency Domain Reflectometry (OFDR)
This research concentrates on measurement based on � OTDR method. DAS vibration 
sensing within the scope of �OTDR based measurement technology has shown 
promising results for monitoring potential threats for fiber optics cables or vibrations in 
general. OTDR provides high sensitivity to fiber optics vibrations and also spatial 
resolution in the order of tens of kilometers and has been extended even over 100kms 
by using optical amplification. (Tejedor et al., 2017).

 
Rule-Based vs Discriminative model 
vs Generative model 
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Extensive research has been done on the application of DAS+PRS to classify the vibration 
in one or more classes. Before the application of machine learning techniques to DAS 
vibration data, historically, simple threshold-based strategies on the energy values 
received were used for ����� - based data systems (Tejedor et al., 2017).

Discriminative model-based methods have been employed in prior research for anomaly 
detection and also for vibration classification. Rule-based and statistical generative 
algorithm model-based approach towards anomaly detection has also been a choice in 
prior research. While discriminative models are a strong candidate for pattern 
recognition for vibration data, however, there are some fundamental challenges (such as 
availability of labelled data, compatibility with varying environmental conditions) around 
this methodology (Aktas et al., 2017). Similarly, unsupervised learning methods and 
conventional generative modelling also pose challenges when tackling real-world 
conditions (Tejedor et al., 2017).

Pioneering work was accomplished by (Oh & Yun, 2018), wherein auto-encoder 
architectures were used for anomaly detection for machine sounds. However, such an 
implementation has not been seen for vibration data obtained from DAS for fiber optics 
cables. 

(Goodfellow et al., 2014) proposed a new family of deep learning-based generative 
algorithms, based on adversarial learning. This family of algorithms is commonly known 
as GANs (Generative Adversarial Networks). In recent years, GANs have gone through an 
exponential evolution. (Gui et al., 2020). While GANs have been extensively used in the 
context of generating data samples that are theoretically inexistent, they have also been 
extended for anomaly detection. Considerable research has been done in the application 
of GANs for anomaly detection (Di Mattia et al., 2019), and some of the notable 
contributions have been around AnoGAN (Schlegl et al., 2017), EGBAD (Efficient GAN 
Based Anomaly Detection) (Zenati et al., 2018) & GANomaly (Akcay et al., 2019). However, 
all of the GAN-based anomaly detection research has concentrated on image data but 
not on acoustic and non-acoustic vibration data.

This research explores GANs and their application for anomaly detection in a detailed 
manner. It also aims at evaluating the capability of GANs-based anomaly detection 
algorithms for vibration data obtained from DAS. An extensive literature review has 
revealed that such an evaluation and experimentation has not been done before, and 
therefore, this research would like to put forward this as a unique application of GANs 
with the domain of PRS for DAS.
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Fiber optics cables have revolutionized the way a common household uses internet 
connectivity and also the way surveillance is carried out at high-security and critical 
industry establishments. In a surveillance application, the high sensitivity of fiber optics 
cables toward surrounding vibrations enables proximity detection and also the 
prevention of damage to associated industries or high-security establishments. In the 
application of data transmission, these cables act as the backbone for the “Age of Data”. 
Such critical applications and usage of fiber optics cable warrant the need for a perpetual 
protection system that safeguards the physical and operational sanctity of the cables. 
Potential damage to this infrastructure may pose serious implications for the common 
public and industry at large. According to the DIRT Report (2019)*, approximately USD 
600 million was spent as a direct repair cost for fiber optics infrastructure in the United 
States.

Considerable research has been done over the past 2.5 decades to build systems that 
could analyze the vibration picked by fiber optics cable. This study aims at augmenting 
this area of research with the application of generative modeling for anomaly detection 
to provide the enhanced capability of ubiquitous monitoring and safeguarding the fiber 
optics infrastructure.

There are multiple different ways (apparatus) in which DAS is employed with fiber optics 
cable for vibration measurement. While there has been extensive research and 
experimentation done in this area, this research covers one of the widely used methods 
for data generation. It is important to mention that the fiber specification mentioned 
below are specific to the experiment carried out for this research and may differ based 
on the equipment manufacturer’s specifications and supported features.
There are two detection methods for both OTDR and OFDR methodologies, direction 
detection method and coherent (heterodyne) detection method. Direct detection 
methods are simpler to implement and it expects optical signals associated with fewer 
constraints. However, the coherent detection method has higher SNR (signal-to[1]noise 
ratio) and dynamic range for measurement, provided coherency is preserved. (Aktas et 
al., 2017)

The block diagram of the DAS system (Aktas et al., 2017)
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The figure presents a DAS system as an example that uses a continuous ware with 
narrow linewidth (<1 kHz) and a (CW) laser having a wavelength of 1550nm. The 
amplification is provided by an Erbium-doped fiber amplifier (EDFA), thereafter the 
signal is fed to an acousto-optics modulator (AOM) which generated the required pulses. 
The generated pulses are fed into the fiber using a circulator. The AOM is also supplied 
with an electrical impulse with a width of 100ns. This light traveling inside the fiber 
experiences Rayleigh scattering. External vibrations result in an optical phase shift on 
the backscattered light. This phase shift is detected by the photodetector (PD). The 
output of the photodetector becomes the input to the analytical system for classification 
and anomaly detection. In the direct detection approach, there is no demodulation 
performed on the backscattered light. It is important to mention that clock 
synchronization between AOM and ADC is of utmost importance because a mismatch in 
the clock frequency would result in erroneous harmonics in the digital data obtained 
from the photodetector.

The data acquisition rate of the sensor is about ~ 370Msamples/sec, however, this is 
reduced to 10Msamples/sec to avoid signal fading phenomenon. Each data sample is a 
16-bit integer [-32678, 32678], therefore, the data input rate equates to ~ 
152.6Mbits/secs, which is equivalent to 19MB of data generated every second. Realtime 
visualization of this data can be seen in a waterfall graph (as shown below). Signal 
amplitude is color-coded based on the legend provided on the graph. The waterfall 
graph below shows the visualization of a slice of cable from 8.5km to 9.5km only.

Waterfall diagram of a vibrator machine sensed at ~8.7 km range with 
the cable buried at a depth of 1 meter.
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In φ-OTDR-based systems, the transduction function will not be stationary as it will be 
heavily affected by environmental conditions, varying along time and location. This is 
especially relevant when the DAS system is based on amplitude measurements, which 
inherently imply non-linear behavior, except for very small perturbations. This 
non-stationary (and in some cases non-linear) response, can be observed by analyzing 
the signal resulting from the detection of pure vibration frequencies: the φ-OTDR-based 
recorded signal will include amplitude varying harmonics and sub-harmonics along with 
the original vibration frequency. The linear transduction mechanism of the sensing 
systems implies that the acquired signals will have reasonably consistent behavior, thus 
providing a favorable scenario for the classification task.

The data generation process employed in some of the research did not consider reallife 
conditions. Sometimes the sensing equipment and sensing area were too close (Madsen 
et al., 2007). There are cases where the sensed area was also too small (Wu et al., 2014a). 
It has also been noticed that in some research, simulated data has been used, thereby 
ignoring the complications and complexities of the real-life environment. (Martins et al., 
2013). Some recent work published has addressed prior issues with data generation, 
where real-life data were used from different fiber lengths, such as 17kms (Papp et al., 
2016b), 24kms (Wu et al., 2015), 220kms (Wu et al., 2014b). Some research has also 
approached the problem from a more realistic viewpoint. In the research presented by 
(Martins et al., 2015), cross-validation sets from the data were also used to validate the 
model on data points not seen during the training process. Around the same period, 
research presented by (Wu et al., 2015) & (Papp et al., 2016b) performs vibration 
measurement at the same point, therefore, biasing the model training process towards 
the point of vibration rather than vibration features.

Data generation fundamental and techniques around fiber optics cables have come to 
an advanced maturity level, and concepts related � OTDR and OFDR has become an 
industry standard. Along with this, HW systems have also been standardized with the 
capability of providing data based on customizable settings as per \the need of the 
application. However, feature extraction methods and vibration analysis methodologies 
are still popular areas of research within the community. The research community has 
been implementing different machine learning approaches for performing anomaly 
detection, deep learning-based applications have been few. There has been some 
pioneering work related to the application of deep learning-based auto-encoders for 
anomaly detection, however, the recent state-of-the-art approaches for anomaly 
detection have not been explored for vibration data obtained from fiber optics cables. 
This research tries to explore the efficacy of the application of recent advancements in 
the field of GANs for anomaly detection for fiber optics vibration data to perform 
anomaly detection.
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As explained in the previous section, the data is made available in a matrix, where rows 
signify the temporal axis and columns signify the spatial axis. Considering only 1 of 
anomalous location for understanding and visualizing data, the raw intensity value 
visualization graph is shown below.

A spectrogram plot of the data is shown below 

A depiction of data from the FFT perspective is shown below 

Spectrogram For the data considered for visualization, maximum intensity is present 
for frequencies <= 500Hz.

Time Vs Intensity Graph (Raw DAS Data) 
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FFT Plot
Comparing the spectrogram and FFT plot, the following can be inferred 
▪  The majority of the signal has frequencies <= 500Hz 
▪  99 percentile of magnitude data <= 7.0  
There are some harmonic frequencies present around 45Hz, 70Hz, 95Hz, 118Hz, 140Hz, 
165Hz, 188Hz. This can be seen from the spectrogram and FFT plots below:

Another important point to notice here is that pre-processing based on FFT only provides 
frequency-domain information. However, from the spectrogram, it can be seen that the 
harmonic frequencies are present at different time periods. The spectrogram-based 
pre-processing is similar to time-frequency domain-based data pre-processing. More 
details about data pre-processing are covered in the next section.

While evaluation metrics provide a good empirical viewpoint for comparing different 
modeling techniques and respective variations, however, it is also important to evaluate 
the models from a real-life perspective viewpoint. This research has extensively used 
spectrogram-based visualization in performing data understanding, data preparation 
and, data transformation methods. Therefore, it is also important to use the same 
technique and perform model performance evaluation and judge which model is 
performing better and where all do pitfalls occur.

Spectrogram Plot (Limited Freq ϵ [0,200])

FFT Plot (Limited Freq ϵ [0,200])
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To achieve the above evaluation methodology, some specific data files were chosen 
which could simulate real-world scenarios.
•  Mixed Vibrations (Anomalies and Environmental Vibrations)
-  In this scenario, there are timesteps where it is expected that the model should      

 detect anomalies as there are high-intensity vibrations at lower frequencies. This is  
 a complex scenario, where the models are expected to have high precision and  
 high recall while performing prediction

•  Maximum Anomaly Vibrations
-  In this scenario, there are long-term anomaly vibrations and the models are   

 expected to predict  a high recall rate.
•  Only Environmental Vibrations
-  In this scenario, there are only environmental vibrations, and the models are  

 expected to predict them as non-anomalous.
How Might we

Table: Summary of Visualization of Prediction by Spectrogram
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1.1.2. Example – 1

 
1.1.1. Spectrogram Analysis – Mixed Vibrations 
(Anomalies & Environmental Vibrations) 

1.1.3. Spectrogram Analysis – Mixed Vibrations 
(Anomalies & Environmental Vibrations) – Example - 2 

Spectrogram Analysis – Mixed Vibrations – Example-1

Note: Spectrogram plots presented in this research are high-resolution in specifications. The 
reader is requested to zoom into the prediction’s plots for readability & clear viewability. 

Spectrogram Analysis – Mixed Vibrations – Example – 2

Note: Spectrogram plots presented in this research are high-resolution in specifications. The 
reader is requested to zoom into the prediction’s plots for readability & clear viewability. 
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1.1.4. Spectrogram Analysis – Maximum Anomaly Vibrations – 
Example -1 

Figure : Spectrogram Analysis – Anomaly Vibrations - Example – 1
Note: Spectrogram plots presented in this research are high-resolution in specifications. The 

reader is requested to zoom into the prediction’s plots for readability & clear viewability. 

1.1.5. Spectrogram Analysis – Only Environmental Vibrations – Example – 1  

Figure: Spectrogram Analysis – Environmental Vibrations – Example - 1
Note: Spectrogram plots presented in this research are high-resolution in specifications. The 

reader is requested to zoom into the prediction’s plots for readability & clear viewability. 
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Discussion & Conclusion 

One of the key achievements of this research have been to prove the applicability of 
GAN[1]based anomaly detection algorithms, originally conceptualized for image-based 
data, to a different domain of DAS-based fiber optics vibrations. Some other key 
conclusions from this research are categorized and discussed below.
• Data Processing & Data Transformation Techniques

Signal processing has been a backbone for analyzing fiber optic vibrations. However, 
there are multiple ways to process time-series data, starting from simple techniques like 
moving averages, all the way to Fourier Transform-based processing. DAS systems 
provide energy domain-based data, which can be converted to the frequency domain 
using Fourier Transform and also the time[1]frequency-domain using Short Time Fourier 
Transform. This research uses time-frequency domain-based transformation. 
Furthermore, this research also evaluates some unique ways to transform 
time-frequency domain-based data from the STFT algorithm, to build 3D tensors which 
could be used as input data for deep learning models. It concludes that (Time, Location, 
Frequency) based 3D tensors align best with Convolution2D-based deep learning 
models. Such an analysis of data processing and data transformation technique are 
some of the key contributions of this research.
• Modeling Techniques
-  Among the 4 modeling architectures, evaluation viz-a-viz Auto Encoder, AnoGAN,  

 EGBAD, and, Ganomaly-based anomaly detection technique is providing the best  
 evaluation metrics. This can be validated from the spectrogram-based evaluation  
 graphs as well.

-  Auto Encoder-based anomaly detection models also show efficacy in many   
 practical evaluations, however, their sensitivity to environmental noise is quite  
 high, leading to higher False Positive predictions.

-  AnoGAN does not have good Precision and cannot be chosen as a practical   
 application methodology. Additionally, their backpropagation-based prediction  
 methodology does not fit the requirement for any practical application.

-  Within the scope of EGBAD-based models, binary-cross-entropy loss methods  
 show disappointing spectrogram evaluation results. Conversely, the feature   
 loss[1]based EGBAD method has shown considerable balanced accuracy, however,  
 environmental noise sensitivity leading to False Positives and False Negatives are  
 also seen in multiple cases.
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- Ganomaly is the most recent development in GAN-based anomaly detection 
techniques. One of the key advantages of Ganomaly architecture is the ability to 
provide lower dimension latent space representation of input data and also provide a 
generative capability from lower dimension latent space. Ganomaly-based anomaly 
detection methods have come out to be best within the scope of this research, and 
provide exceptional balanced accuracy and F1-Score. This can also be seen in the 
spectrogram-based graphical evaluation methods. The model evaluation 
methodology for Ganomaly is also one of the simplest leading to the conclusion that 
it is a strong candidate for practical application as well.

Comparison DAS Fiber Optics Anomaly 

Detection – GAN Based Models

Spectrogram-Based Model Evaluation Methodology

Machine learning and Artificial Intelligence-based research usually judge the models 
only based on evaluation metrics, such as accuracy, AUC/ROC, F1-Score, Precision/Recall, 
etc. This research evaluates the models from a more practical viewpoint as well, by 
visualizing the predictions provided by the models over spectrograms. These evaluations 
have been done from multiple different real-life scenario perspectives (mixed vibrations, 
majority anomaly vibrations & environmental vibrations scenarios), thereby adding 
value to the way how models should be evaluated. This also adds another dimension to 
the efficacy of the models from a practical application perspective.

The results presented as part of this research do conclude that Ganomaly-based 
anomaly detection is the best among the compared modeling technique, however, it is 
also important to mention that this comparison is based on the set of variations 
experimented. 
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Contribution to Knowledge

Deep Learning provides a wide array of hyper-parameters and virtually an infinite scope 
of modeling architectures. However, within the scope of experiments executed as part of 
this research, it can be strongly concluded that Ganomaly-based anomaly detection for 
DAS-based fiber optics vibrations is the best and shows strong practical application 
candidature.

Analysis of vibrations obtained from fiber optics cables has been an area of strong 
research for many years. There have been constant contributions from the community in 
this area and there have been regular advancements in the application of different 
techniques to analyze these vibrations. While signal processing methods have seen 
maximum work being done in this field, needless to say, application and 
experimentation based on machine learning techniques have also picked up in the last 
few years. However, the application of generative deep learning-based methods has 
been rare, if not none. This research aims to further push the efforts done in the area of 
application of generative deep learning -methods for fiber optics vibration analysis, by 
acting as a cornerstone in concluding that GAN-based anomaly detection methods can 
be applied to fiber optics vibrations. This research can also result in attracting more 
members of the community to experiment with different data and model architectures 
for anomaly detection as well as the application of generative deep learning as a whole 
for fiber optics vibration analysis.

Some of the key contributions of this research around data preparation, data 
transformation, and, application of GAN[1]based modeling techniques can be used in 
various different scenarios and use cases in the domain of fiber optics vibrations. This 
research hopes to trigger a ripple effect and attraction to generative deep learning in the 
community working on fiber optic vibrations.

Future Recommendation

While this research does bring forth some very important conclusions related to 
GAN[1]based anomaly detection for fiber optics vibrations, there are still many more 
variations that can be evaluated. In this research, certain elements have been kept 
constant, such as input tensor shape and basic building blocks (Generalized Encoder, 
Generalized Decoder, and, Generalized Classifier/Discriminator). 
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The reason to keep these elements constant across different architectures was to 
provide a fairground for comparison. However, this also limits the search space for the 
model architecture, activation functions, hyper-parameters, and, optimizer parameters. 
This research can be taken further with more variations executed for individual modeling 
techniques.

Additionally, this research is based on a dataset collected from a specific location that 
was exposed to some specific external vibrations (as anomalies) and some 
environmental conditions/vibrations. Environmental vibrations should be classified as 
non-anomalous vibrations and therefore it is important to gather more 
non[1]anomalous data points for building a robust model. For example, data collected 
from area which has a high amount of random traffic noise can also be a good addition 
to this dataset. There can be many kinds of non-anomalous high-intensity random noise 
vibrations, which could be added to build a comprehensive databank for building 
models.
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